A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
نویسنده
چکیده
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)” that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks. Keywords—Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.
منابع مشابه
A Modified Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR sig...
متن کاملP63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network
Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملComparative Assessment of Fractal Image Compression with and without Neural Networks for Medical Images
The Demand for bulk storages of Medical Images in today’s growing world has lead to many advanced Image compression algorithms. One such algorithms used for compressing images is Fractal image Compression (FIC).Fractal Image compression is found effective for medical images in preserving the quality of the image with high Compression Ratio. Fractal Encoding involves partitioning the images into...
متن کاملAnnealed Hopfield Neural Network with Moment and Entropy Constraints for Magnetic Resonance Image Classification
This paper describes the application of an unsupervised parallel approach called the Annealed Hopfield Neural Network (AHNN) using a modified cost function with moment and entropy preservation for magnetic resonance image (MRI) classification. In the AHNN, the neural network architecture is same as the original 2-D Hopfield net. And a new cooling schedule is embedded in order to make the modifi...
متن کامل